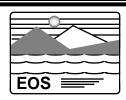


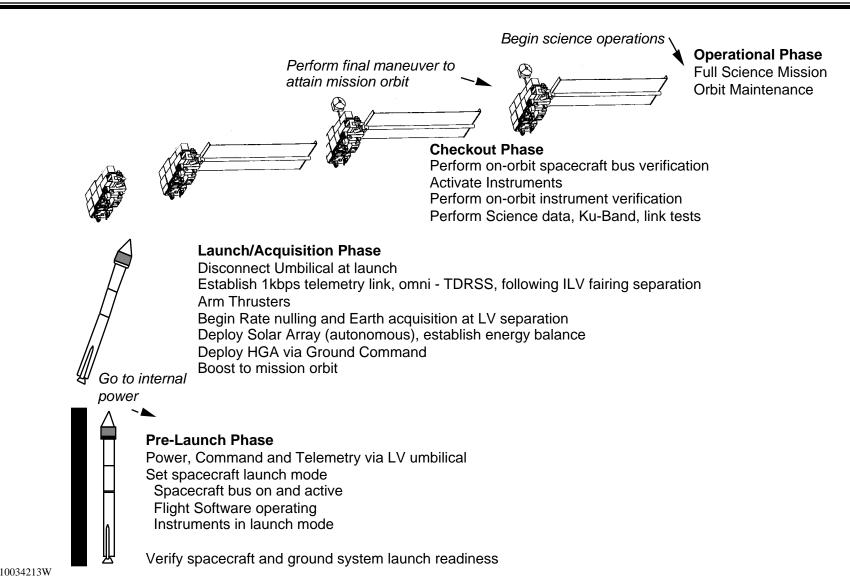
EOS AM-1 Mission Operations Review

EOS AM-1 L&EO OPERATIONS AND SPACECRAFT MANEUVER SUMMARY

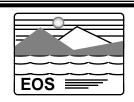
TERRY FORD Operations Engineering


Lockheed Martin Missiles and Space Valley Forge, PA USA E-mail: tford@eos.vf.mmc.com

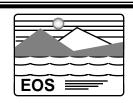
10034213W


FORD

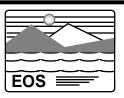
Mission Phases



FORD 2

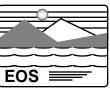

Launch Configuration – Housekeeping

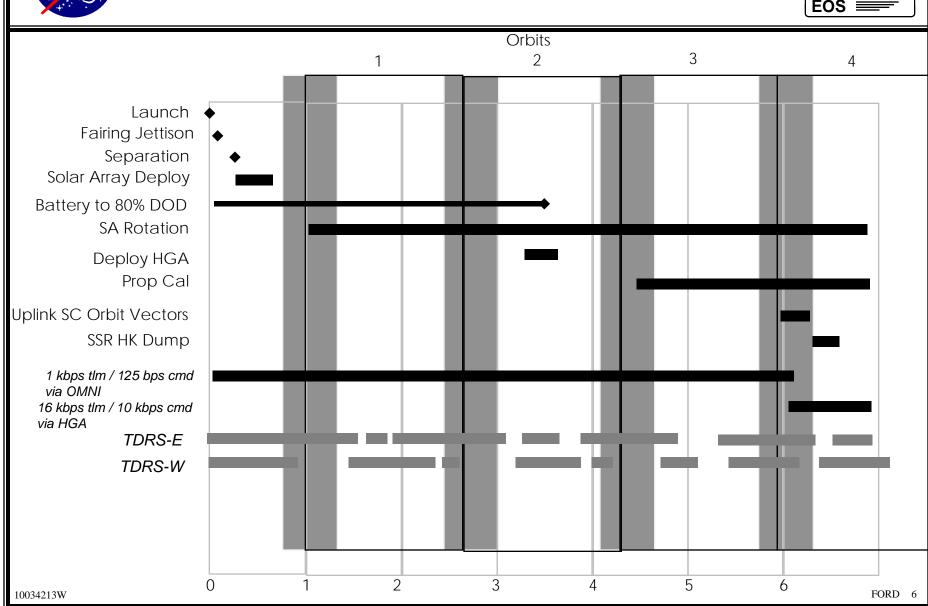
Subsystem	Launch Configuration	Comments
GN&C	ON: ACE B, Earth sensors 1 and 2, IRUs 1 and 2 (two selected/high rate), RWAs, TAMs, and MTRs OFF: SSSTs, FSS ADAC software in Idle mode NAV FSW in Launch mode	 Subsystem configured for Earth Acquisition mode processing on receipt of launch vehicle separation. ACE configured for Earth-pointing safehold with thruster control. NAV FSW processing pre-loaded orbit elements.
PROPS	ACS (1 lbf) thrusters: Disarmed/disabled V (5 lbf) thrusters: Disarmed/disabled Catalyst bed heaters (All): Off Latch valve: Open PMEA 1 (primary): On	 ACS thrusters to be used for initial rate nulling immediately after separation. Thrusters will be armed and enabled via SCC command on launch vehicle separation. Thrusters will be cold fired.
C&DH	SCC1(primary): On CTIUs: On BDUs: On SSR (data control unit): On SSR (data memory unit): Off SFE: Off	Subsystems configured for • Command via — T0 umbilical until liftoff — Omni link after fairing separation • Real-time telemetry — 1 kbps via T0 umbilical until liftoff. — 1 kbps via Omni after transmitter turn on — 1-kbps H&S via Atlas II/Centaur throughout • Recorded telemetry — 16-kbps housekeeping recorded in SSR.
COMM	S-band receivers: On S-band transmitters: Off Master oscillator: On DAS components: Off KSA modulators: Off HGA components: Disabled	
TCS	HGA and solar array stowed HCEs: On CPHTS: Off	 Mechanism deployment during early mission operations Housekeeping heaters available
EPS	Batteries: Online EPS components: On Array components: Off	Power Via umbilical until L-5 minutes, battery power thereafter.


Launch Configuration – Instrument

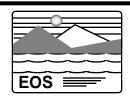
Instrument	Launch Configuration		Comments
ASTER	Launch Mode Operational Power: DISABLED Survival/Cooler Power: DISABLED TIR Scanner Latch: ONCooler Latch: ON VNIR Launch Lock: ON SWIR Cooler Launch Latch: ONScan Mirror: Cal Position	. ,	Power feeds disabled at PDU ASTER desires to enable both operational and survival/cooler power feeds no later that 45 minutes after liftoff.
CERES	Launch Mode Operational Power: DISABLED CERES Survival Power: DISABLED Elevation Gimbal: STOWED Azimuth Gimbal: CAGED Covers closed	• (Survival power disabled at instrument relay and at PDU. Gimbals in launch position. CERES desires to enable survival no later than 5 hours after liftoff.
MISR	Launch Mode Operational Power: DISABLED MISR Survival Heaters: DISABLED Covers and mechanisms stowed and latched		MISR power feeds enabled at PDU; survival power enabled at instrument relay.
MODIS	Launch Mode Operational Power: DISABLED Survival Heaters: DISABLED Doors closed and latched	· 1	MODIS power feeds disabled at PDU. MODIS desires to enable survival power no sooner than 12 hours and no ater than 20 hours after separation from launch vehicle.
MOPITT	Launch Mode Operational Power: ENABLED Survival Power: ENABLED Choppers: ON Length-Modulated Cells: ON Port covers closed and latched	· 1	Operational power enabled. Rotary choppers and length-modulated cells to be powered OFF and MOPITT Survival mode set 1 minute after separation form launch vehicle.

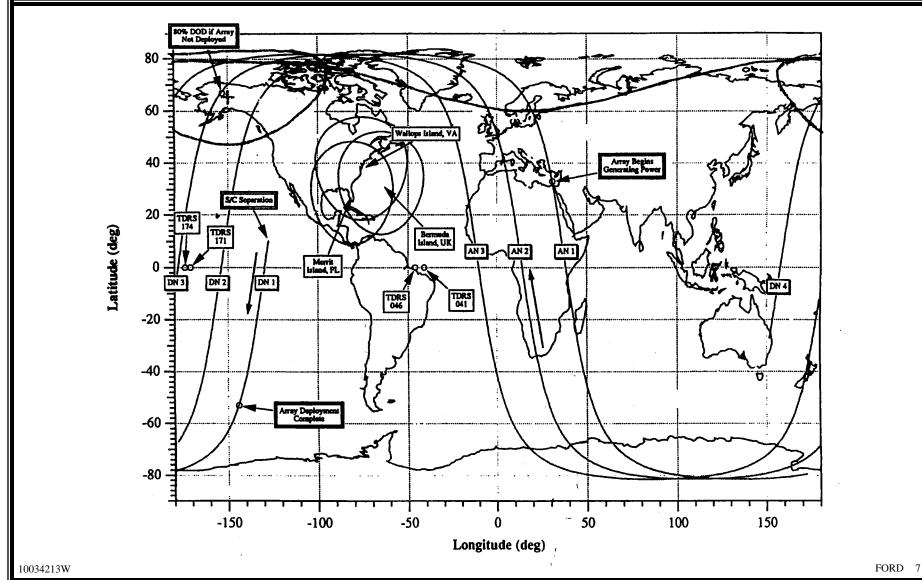
Launch Critical Elements

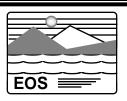


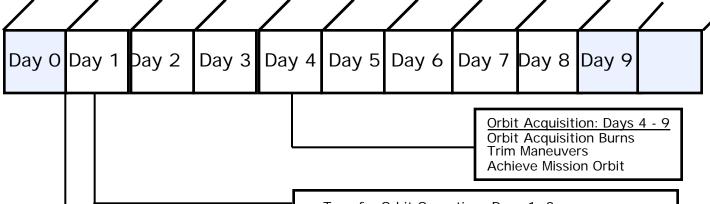

The following elements are critical for launch:

- Launch vehicle (LV)
 - Atlas II AS: Ready for launch
 - LV GSE: Ready to support LV launch
 - TDRS LV Support: Ready for downlink telemetry
- Spacecraft
 - Spacecraft: Launch mode
 - SCS: Ready to support launch
- SN/TDRSS: Configured and ready to support S/C Ascent and Early Orbit
- Backup Stations: Ready to support emergency S/C Operations (S-band only)
- EOC: Configured and ready to support S/C Operations
- EDOS: Configured and ready to support EOS AM-1 Telemetry and Command
- EBnet: Configured and ready to support EOS AM-1 Flight Operations Communications
- FDD: Configured and ready to provide EOS AM-1 Flight Operations Support


Early Mission Timeline

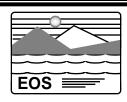



Early Orbits' Ground Track



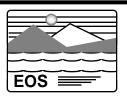
Launch/Acquisition Phase Operations

Prelaunch Phase Days: Pre 1 Launch/ Acquisition Phase Days: 1 - 9 Checkout Phase Days 9=>

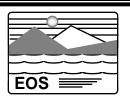


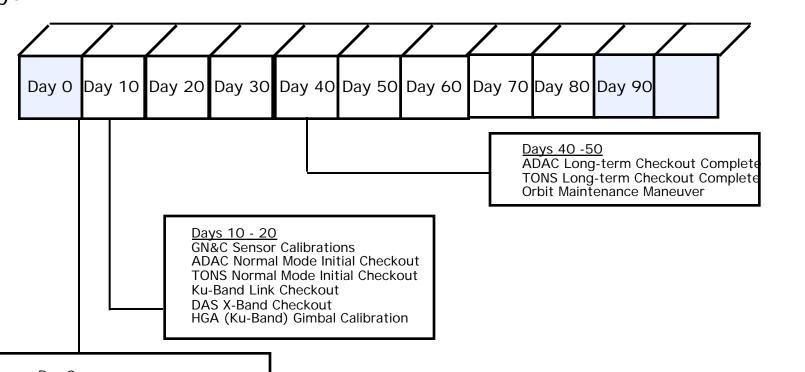
Early Mission Operation Day 1 Rev 0
Go to Internal Power (L-5:00)
Liftoff (L)
Fairing Jettison (L+3:12)
S-Band Transmitter On (L+7:00)
Launch Vehicle Separation (L+14:00)
Earth Acquisition (L+14:00 - 30:00)
MOPITT Power Commands (L + 15:00)
Solar Array Deployment (L + 16:00 - 32:00)
Command Link Establishment (L + 24:00)
HGA/Instrument Power Commands (L+35:00)
Array Rotation Commanding (L+ 58:00)

Transfer Orbit Operations Days 1 -3
MODIS Power Enabled
HGA Deployment
HGA Gimbal Checkout
HGA Communications Check out
Playback Launch Ascent Telemetry
Propellant Gauging
Orbit elements and stored commands for HGA pointing


Early Mission Timeline – Day 1

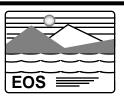
Orbit	Nominal Times	Key Events		Notes
Pre - 0		Set launch configuration	•	Power via umbilical until L-5; battery power thereafter
	L - 5:00	Go to internal power	•	Command via T-0 umbilical until liftoff via Omni link after
	Launch	Liftoff		transponder turn on.
	L + 3:12	Fairing separation	•	Telemetry 1 kbps via T0 umbilical until liftoff, 1 kbps via
	L + 7:00	S-band transponder turned ON		Omni after fairing separation; 1 kbps housekeeping via
	L + 14:00	Launch vehicle separation		Atlas II/Centaur throughout.
0	L + 14:00	Separation signal received	•	Earth acquisition uses thrusters for initial rate nulling only;
	L + 14:03 - 30:00	Earth acquisition		reaction wheels thereafter.
	L + 15:00	MOPITT LMCs and choppers OFF; set	•	MOPITT LMCs and choppers on through ascent. Solar
		Survival mode		array deployment uses nonexplosive actuators.
	L + 16:00 - 32:00	Solar array deployment	•	ASTER/CERES/MOPITT and HGA supplied with
	L +24:00	Command link checkout		power for Survival mode heaters.
	L +35:00	Instrument power supplied		
	L +35:00	HGA power supplied		
	L +40:00 -1:15:14	First eclipse		
	L +58:00	Initiate solar array open loop tracking (1 w)		
1		Electrical power subsystem status checkout	•	EPS checkout after eclipse for first 10 orbits.
2	L +3:20:00 - 4:00:00	Transmit launch ascent telemetry	•	HGA gimbal test and link establishment.
	L +4:00 - 4:20	HGA deployment and checkout	•	Recorded housekeeping telemetry playback (HGA/TDRS
		Propellant volume calibration initiation		SSA).
3	L + 4:30	EPS status checkout	•	Propellant volume calibration to meet propellant estimation requirement (24 hours).
4 - 10		EPS status checkout	•	EPS checkout after eclipse for first 10 orbits.
7	L + 12:15:00	MODIS power enabled	•	MODIS supplied with power for Survival mode heaters approximately 12 hours after separation.


Orbit Acquisition

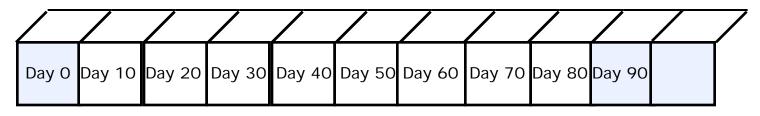

- Orbit acquisition maneuvers to raise spacecraft from Atlas II
 AS separation orbit (~690 x 550 km altitude) to mission orbit
 (705-km circular)
- Nominal scenario
 - Four large (15-minute) Delta-V burns using two 5-pound thrusters, burns centered at apogee to raise perigee to nearmission altitude
 - Large maneuvers to include initial yaw attitude offsets, of up to ±20 degrees, sufficient to remove launch vehicle inclination dispersions
 - Several small (trim) maneuvers performed as necessary to achieve mission orbit
 - Maneuvers are not time critical
 - » FDD to plan and coordinate maneuvers
 - » Nominal schedule is to perform one large burn per day
 - » Burns scheduled to occur starting on third day

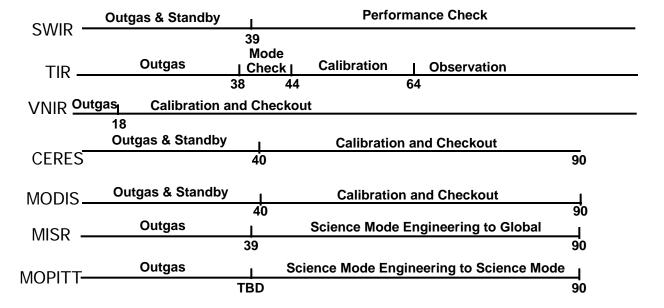
Housekeeping Checkout Phase Operations

Launch/ Acquisition Phase Days 1 -9 Checkout Phase Days 9 - 90 Operational Phase Days 90 =>

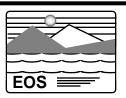


Day 9
ADAC Normal Mode Initialization
TONS Normal Mode Initialization
CPHTS Turn on


10034213W



Instrument Checkout Phase


Launch/ Acquisition Phase Days 1 -9 Checkout Phase Days 9 - 90 Operational Phase Days 90 =>

EOS AM-1 Mission Profile

- EOS AM-1 mission orbit
 - Sun-synchronous and frozen orbit

» 705 km ±5 km
Mean equatorial altitude

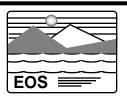
» 98.2 deg ±0.15 deg Inclination

» 90 deg ±20 deg
Argument of perigee

» 0.0012 ±0.0004 Eccentricity

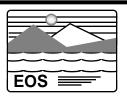
- Descending node 10:15 to 10:45 a.m. local mean solar time (LMST)
- 233 orbit ground track repetition interval (16 days)
- ±20-km ground track repetition accuracy at all latitudes
- Frozen orbit: ±5-km radial orbit position repeatability at all latitudes
- EOS AM-1 injection orbit

689.9 km ±7.0 km
 Separation apogee altitude

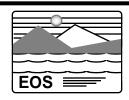

551.4 km ±2.5 km
 Separation perigee altitude

98.224 deg ±0.1 deg Inclination

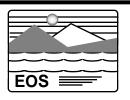
10034213W


EOS AM-1 Spacecraft Maneuver Summary

- EOS AM-1 maneuvers required to support mission
 - Orbit acquisition maneuvers raise spacecraft from Atlas II AS separation orbit (~690 X 550-km altitude) to mission orbit
 - » Four large (15-minute) Delta-V burns using two 5-pound thrusters, burns centered at apogee to raise perigee to near-mission altitude
 - Large maneuvers to include initial yaw attitude offsets (up to ±20 degrees) sufficient to remove LV inclination dispersions
 - » Several small (trim) maneuvers performed as necessary to achieve mission orbit
 - Orbit maintenance maneuvers
 - » Maintain descending node LMST
 - Periodic inclination maneuvers
 - Requires initial 90-degree yaw attitude slew before and after out-of-orbit plane Delta-V burn
 - » Maintain ground track
 - Altitude correction (drag makeup) maneuvers
 - Performed weekly to monthly, as dictated by solar activity, small in-plane Delta-V maneuvers of <1 minute each
 - One burn per orbit


EOS AM-1 Spacecraft Maneuver Summary (Cont'd)

- » Maintain frozen orbit
 - Period eccentricity vector corrections performed as required
 - Plan is to perform coincident with drag makeup maneuvers
 - May be performed occasionally as two drag makeup burns spaced about orbit
- CERES yaw maneuver
 - » Necessary to quantify partial blockage of CERES solar calibration FOV
 - » Maneuver duration approximately 15 minutes once or twice per year after initial checkout
 - » Yaw slew of up to 11 degrees based on solar beta angle
 - » Reaction wheels will be used; not a thruster maneuver
- GN&C sensor calibration maneuvers being evaluated; could require slews on the order of 20 degrees during checkout phase operations
- Other science-driven maneuvers under evaluation
- Maneuver planning
 - Maneuvers will be planned by GSFC FDD
 - Maneuver predicts 7 weeks before event
 - Final burn plans 4 to 24 hours in advance
 - Maneuvers are not time critical; afford flexibility in scheduling instrument activities (e.g., MODIS field activity) and TDRSS coverage


EOS AM-1 Maneuver Summary

	Orbit Acquisition	Orbit Maintenance Drag Makeup	Orbit Maintenance Inclination Correct	CERES Yaw Slew
Thrusters Used Frequency	YES 6 or 7 during orbit acquisition	YES Weekly to monthly	YES 1 or 2	No 4 to 6 first 3 months; 1 to 2 per year thereafter
Constraints	Dependent on injection orbit	1 or 2 burns located to maintain frozen orbit	Equator Crossing Nominally during eclipse	North Pole region; beta angle dependent
Attitude Maneuver	15- to 20-degree yaw slew before and after large V burns using thrusters	None	~90-degree yaw slew before and after V burn using thrusters	0- to 11-degree yaw axis slew for of 24 to 13 degrees for ~15 minutes using reaction wheels
Attitude Burn Time	2 minutes each way	N/A	10 minutes each way	N/A
V Burn Time	4 burns of 15 minutes; 2 to 3 burns of 1 minute	<1 minute	10 to 15 minutes	N/A
Time to Attitude Recovery (Science Accuracy)	N/A	10 minutes	1 to 2 orbits (3 hours) (depends on need for filter reconvergence)	0 minute
Time to Navigation Recovery (Science Accuracy)	N/A	Science requirements should be maintained (return to preburn accuracy in 1 hour after each burn)	6 to 24 hours (dependent on postmaneuver TDRS schedule and NAV FSW configuration)	Science accuracy maintained
Coverage	TDRS and ground required for first burns; TDRS desired/expected thereafter	During: TDRS desired/ expected After: Two NAV contacts per burn, each 1/2 orbit apart	During: TDRS desired/ expected After: NAV contacts to both TDRS 1/2 orbit apart for 6 hours	During: TDRS desired/ expected

EOS AM-1 Maneuver Summary

Instrument Activities					
Instru- ment	Orbit Acquisition	Orbit Maintenance Drag Orbit Maintenance Inclination Makeup Correct	CERES Yaw Slew		
ASTER	Launch configuration heater and op erational power enabled	Pre maneuver: Transition from Standby mode to Contamination Safe mode in approximately 10 minutes. Component on/off as in Standby mode, mirrors positioned to cal positions. Post maneuver: Transition from Contamination Safe mode to Standby mode. SWIR mirror returned to operational position (approximate 10-minute recovery) .	Normal Operations		
CERES	Launch configuration heater power enabled	Contamination Safe mode — Boresights moved to safest orientation; covers remain open. Maximum azimuth gimbal slew time approximately 15 seconds.	Solar calibration		
MISR	Launch configuration heater power enabled	Safe mode calibration plates stowed, covers closed	Normal Operations		
MODIS	Launch configuration heater power enabled	Transition to Standby mode; solar diffuser door closed	Normal operations; flagged data		
MOPITT	Launch configuration heater power enabled	Drag makeup maneuvers – Short -term cal Inclination correct – Long-term cal	Short -term cal		